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ABSTRACT: 

 

This paper discusses the problem of scale in current approaches to Object Based Image Analysis (OBIA), and proposes how it may 

be overcome using theories of texture. It is obvious that aerial images contain land-cover that is textured and thus any features used 

to derive a land-cover classification must model texture information and as well as intensity. Previous research in the area of OBIA 

has attempted to derive land-cover classification using intensity features only, ignoring the presence of texture. This has led to a 

number of issues with the current theory of OBIA. Using only intensity it is impossible to perform segmentation of textured land-

cover. In an attempt to tackle this problem it has become practice in OBIA to run segmentation at a number of different scales in the 

hope that each textured region will appear correctly segmented at some scale. 

 This process of performing segmentation at multiple scales is not in line with current theories of visual perception. 

Julesz (Julesz 1983) states that when we view an object our aperture is adjusted to view that object in its true form. Also in theories 

of visual object recognition each object or feature is represented only once in its true form. The result of integrating segmentation at 

multiple scales is the generation of a land-cover hierarchy in a bottom-up manner but this is not how our visual system generates 

such hierarchies. This process in the visual system is conversely very top-down, with the aggregation of objects not only being 

driven by their relative intensity or texture features but also our knowledge, desires and expectations. Quantitative evaluation is also 

made increasingly difficult due to the lack of ground truth for each scale; it is impossible to predict the appropriate appearance of 

ground truth at each scale. Given the fact that each land-cover is represented at a number of scales, the number of context 

relationships between objects which must be managed is exponentially large. This makes the task of deriving land-use from land-

cover increasingly difficult. If a robust set of intensity and texture features can be extracted and integrated correctly it would be 

possible to represent each land-cover in its true form within the one segmentation. Using a non-linear diffusion process and a 

geostatistical feature extraction algorithm we extract a set of intensity and texture feature respectively. Theses features are then 

integrated in such a manner to perform discriminate land-cover based on intensity where possible and texture where not. The 

motivation being that intensity features do not suffer from the uncertainty principle unlike texture thus giving more accurate 

boundary localization. 
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1. INTRODUCTION 

Given the failings of traditional pixel based remote sensing 

techniques to provide accurate land-use classification of high 

resolution data in urban areas, many authors are attempting to 

move to a model of classification motivated by the human 

visual system (Blaschke and Hay 2001). This new approach to 

land-use recognition known as object based image analysis 

(OBIA) comprises two steps. The first is a land-cover 

segmentation of the scene, and this in turn is used as input to a 

structural pattern recognition system which models the 

structural relationships of individual land-cover to define land-

use. It is generally accepted that the human visual system is in 

some form object based. Watt (Watt 1995) argues that this 

provides an alternative for the visual system to the computation 

of a full representation of spatial relationships within an image. 

The work presented in this paper focuses on the first of the 

above steps in OBIA, generating accurate land-cover 

segmentation in urban areas. We propose a new model of land-

use classification which overcomes some issues with previous 

approaches. 

 The outline of this paper is as follows. Section 2 

discusses some problems of multiscale representation and how 

they may be overcome by incorporating texture information. 

This is followed by our methodology section which describes 

the algorithm developed to implement this theory. Results are 

reported and discussed in section 4. Finally section 5 describes 

the conclusions drawn from this work. 

 The data used in this study consisted of subsets 

of orthorectified scanned colour aerial photography of 

Southampton city obtained from the Ordnance Survey 

Southampton, with a ground sample distance of 25cm. The 

photographs were converted from colour to greyscale and all 

analysis was performed on these greyscale images.  

 

2. PROBLEMS OF AND SOLUTIONS TO 

MULTISCALE REPRESENTATION 

Most previous work in the area of OBIA has attempted to derive 

land-cover segmentation using the visual cue of colour/intensity 

solely. This would be appropriate if all land-cover was 

completely uniform intensity but this is not the case. Most land-

cover contains small scale texture which must be taken into 

account when performing segmentation because attempting to 

perform accurate segmentation of textured land-cover using just 

intensity information is not possible. In an attempt to lesson this 

deficiency much effort has been invested into approaches which 

run intensity segmentation at multiple scales in the hope that 



 

each land-cover will appear correctly segmented at some scale. 

All segmentations are then merged resulting in the generation of 

a land-cover hierarchy. This above process of running intensity 

based segmentation at multiple scales thus representing each 

land-cover a number of times, followed by the integration of 

results to form a land-cover hierarchy, is not in line with current 

theories of visual perception.  

 The representation of land-cover a number of 

times is not an accurate model of human visual system for a 

number of reasons. Julesz renowned for his work on the visual 

perception of texture states that “the aperture of attention 

changes its spatial scale according to the size of the feature 

being sought” (Julesz 1983), so when viewing a particular 

feature or object we observe it as one whole. Therefore when an 

area of uniform intensity or texture, which is a definition of 

land-cover, is viewed our aperture is adjusted to view it as one 

whole object. Also the principle of uniform connectedness 

(Palmer and Rock 1994) states that connected regions of 

uniform visual properties (e.g. intensity, texture) tend to be 

perceived initially as single objects and correspond to entry 

level units of visual stimuli. In theories of object recognition 

such as Biederman’s recognition-by-components (Biederman 

1987), complex objects are described as spatial arrangements of 

basic component parts. The first step is the segmentation of the 

image into a number of parts that can then be matched against 

representations of primitive components. In this theory each 

component which corresponds to land-cover in our problem is 

only represent once in its true form. 

 Integration of intensity based segmentation at 

multiple scale results in the generation of a land-cover hierarchy 

in a completely bottom-up (driven without knowledge) manner. 

Vecera and Farah (Vecera and Farah 1997) showed that the 

aggregation of objects in the human visual system to produce 

segmentation of a larger scale in the hierarchy is in fact top-

down (knowledge driven), with the aggregation of objects not 

only being driven by their relative intensity or texture but also 

familiarity. They concluded, “top-down activation can partly 

guide the segmentation process”. Pylyshyn (Pylyshyn 1999) 

also showed visual perception to be influenced by top-down 

factors. 

 The current approaches to OBIA not only raise 

theoretic issues but also raise some practical issues too. 

Running intensity based segmentation at a large number of 

scales in an attempt to best represent each land cover leads to 

high space complexity. For example Hay (Hay, Blaschke et al. 

2003) used Gaussian scale space theory to represent image 

intensity features at 200 different scales. This process of 

representation at a number of scales also leads to large time 

complexity. If land-cover is represented once at its intrinsic 

scale then there exists one context relationship between each 

land-cover pair. On the other hand if each land cover is 

represented n times this gives n2 context relationships between 

each land-cover pair which must be managed. Choosing a 

subset of relationships in an attempt to reduce this complexity is 

also problematic. 

 With segmentation being run at a run of scales 

quantitative evaluation is also made increasingly difficult due to 

the lack of ground truth for each scale; it is impossible to 

predict the appropriate appearance of ground truth at a given 

scale. Therefore the only evaluation possible is qualitative 

performed through visual inspection. We agree with McCane 

(McCane 1997) that a human being is not the best judge to 

evaluate the output of any segmentation algorithm. In our model 

each land-cover is only represented one in its true form within 

one segmentation making quantitative evaluation possible. 

Quantitative evaluation based on the performance of the system 

using the segmentation could be performed, but this does not 

give a good measure of segmentation performance but more the 

overall system. 

 A conceptual model which more accurately 

represents the human visual system and overcomes the above 

problems would possibly contain the following steps: 

1. First a bottom-up driven land-cover classification 

must be performed where each land-cover is 

represented in its whole form within a single 

representation. 

2. Generation of land-cover hierarchy which is both top-

down and bottom-up driven. 

3. Structural pattern recognition system which models 

the spatial relationships of different land-cover 

hierarchies to define land-use. 

 

There are numerous more sophisticated models of human visual 

perception in literature and we certainly do not claim ours to be 

entirely accurate. Nevertheless we do believe it to be a more 

accurate model then the one used in current theories of OBIA. 

Hodgson (Hodgson 1998) describes an alternative conceptual 

model of human image interpretation for remotely sensed 

imagery using theories of human visual search. 

 In this paper we provide a methodology to 

perform the first of the above steps; producing accurate land-

cover segmentation. Land-cover may be defined as the “the 

description of the physical nature of the land-surface” (Wyatt, 

Greatorex-Davies et al. 1993), which could also be interpreted 

as areas of uniform intensity or texture. Hence if an accurate set 

of intensity and texture features are extracted and integrated 

correctly prior to segmentation being performed, it would be 

possible to perform segmentation where each land-cover is 

represented once in its true form within one representation. 

 

3. METHODOLOGY 

In the previous section we hypothesised that a system that 

generates land-cover segmentation incorporating both intensity 

and texture information could represent each land cover in its 

true form overcoming the above problems of multiscale 

representation. In this paper we implementation such a system 

using the following steps: 

1. Extraction of intensity features. 

2. Extraction of texture features. 

3. Integration of intensity and texture features. 

4. Segmentation performed using integrated features. 

 

We now discuss each of these steps in more detail. 

 

3.1 Extraction of Intensity Features 

Intensity is an important feature when trying to discriminate 

between different land-covers. Due to within class variation or 

texture the original intensity values from remotely sensed 

images cannot be used directly as features because doing so 

would lead to over and under segmentation. A common 

approach to remove such variation is to perform linear diffusion 

which is equivalent to Gaussian smoothing. Linear diffusion is 

performed on image I using to following equation 
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with initial condition ),()0,,( yxIyxu = . This does indeed 

remove such within class variation but at the cost of giving 

mixed classes at land-cover boundaries and a loss in boundary 

localization. To overcome these failing a non-linear diffusion 

technique may be used (Perona and Malik 1990), where the 

amount of diffusion performed at any point is proportional to 

the gradient magnitude at that point 
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Where g is a decreasing function of the form (Perona and Malik 

1990) 

 

 

( )( )2

)(
Ku

eug
∇−

=∇ . (3) 

 

 

K is a parameter which specifies the amount of smoothing an 

edge receives given a particular gradient magnitude. The 

motivation for using non-linear diffusion is that land-cover 

boundaries tend to have significantly lager gradient magnitude 

then the gradient magnitude due to the within class variation of 

texture and will hence receive less smoothing. Whitaker 

(Whitaker and Pizer 1993) showed that applying such a 

diffusion process to a texture image will not only preserve edges 

due to land-cover boundaries but also some edges due to 

texture. Obviously we only want to preserve edges due to land-

cover boundaries. Whitaker showed that smoothing the image 

with a Gaussian prior to computation of gradient magnitude will 

achieve this desired result. Incorporating this prior smoothing 

the non-linear diffusion equation now becomes 
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where G is a Gaussian function which takes one parameter 

sigma, which specifies the width of Gaussian. s(t) is a linear 

decreasing function given by 
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where is 0<r<1. Unwanted edges diminish more rapidly then 

the edges due to land-cover boundaries. That is, gradient 

measurements become more reliable as the process evolves; 

hence a Gaussian of linear decreasing width is used. 

 Deng (Deng and Liu 2003) showed that 

applying a non-linear diffusion process to a textured image 

causes all regions to approach their average value. This is 

known as the diffusion property of average grey level 

invariance. If two land-covers are textured but have significant 

different average intensity values, applying non-linear diffusion 

will cause each land-cover to approach its average value. 

Applying land-cover classification now to the diffused image 

will give an accurate classification; an example of this is given 

in figure 1.  

 

  
(a) (b) 

Figure 1: The footpaths in (a) have significant different average 

intensity values then neighbouring landcovers. Therefore 

accurate classification of these can then achieved using the 

diffused image in (b). Ordnance Survey (c) Crown Copyright. 

All rights reserved. 

 

If two land-covers sharing a boundary have different textures 

but similar average intensity values, applying non-linear 

diffusion will cause these regions to be merged and 

classification based on the diffused intensity values will fail. In 

such a case it necessary to perform discrimination based on 

texture features and not the average intensity of land-cover. An 

example of this is shown in figure 2. 

 

  
(a) (b) 

Figure 2: The building roof and the tree located just below in 

(a) have different textures but similar average intensity values. 

The diffused image in (b) shows that discrimination cannot be 

performed based on average intensity values. Ordnance Survey 

(c) Crown Copyright. All rights reserved. 

 

In his implementation, Deng used an annealing diffusion 

function instead of smoothing with a variable width Gaussian 

prior to gradient magnitude computation. Both approaches are 

based on the same idea of performing linear diffusion prior to 

non-linear diffusion and would achieve similar results. 

 

  

3.2 Extraction of Texture Features 

As was shown earlier in cases where land-covers share similar 

average intensity values  but different textures, incorporation of 

texture information is needed in order perform accurate land-

cover classification. For texture feature extraction a robust 

estimate of spatial autocorrelation or variogram known as the 

mean square-root pair difference (SRPD) is used (Cressie and 

Hawkins 1980) 
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Where z represents pixels within the moving window, h a vector 

in both direction and length and Nh the number of pairs used to 

calculate the estimate. The SPRD measure of spatial 

autocorrelation has previously been shown to be an accurate 

model of texture (Lark 1996). In this paper the SPRD is 



 

calculated within a moving window using an isotropy vector of 

length 1 which returns a single feature image. It is obvious that 

texture has multi-scale and anisotropy properties but the 

purpose of this work is not to provide a completely accurate 

model of texture. Using a single feature image makes the 

algorithm more transparent and easier to visualise. 

 In their raw form the texture feature image is not 

suitable for classification. The texture features display 

significant within class variation which would lead to over-

segmentation. Also the feature extraction algorithm responds 

strongly at land-cover boundaries when the moving window 

contains more then one class, this leads to doubly detected 

boundaries in classification (Martin, Fowlkes et al. 2004). To 

remove the within class variation while maintaining boundary 

localization the non-linear diffusion process discussed in 

section 3.1 is applied. A common approach in computer vision 

to removing the response at class boundaries is to apply 

separable median filtering. Separable median filters tend to 

preserve step discontinuities better then 2D median filters (Lim 

1989).  

 
Figure 3: texture feature image extracted from figure 2(a). This 

feature provides better discrimination between building and tree 

then average intensity value shown in figure 2(b) 

 

3.3 Integration of intensity and texture features 

Traditional most remote sensing literature has integrated texture 

and intensity features in an unintelligent manner, simply joining 

feature vectors to form a single larger vector (Carr 1996). A 

number computer vision papers have shown that these features 

must be integrated in a more sophisticated manner in order to 

achieve accurate segmentation. Martin (Martin, Fowlkes et al. 

2004) approached the problem as a supervised learning 

problem, where combination rules were learned from ground 

truth. A number of authors have tackled the integration task by 

defining a measure of texturedness and using this to modulate 

texture and intensity gradients. That is one cue will become 

disused in locations where the other cue should be operating 

(Malik, Belongie et al. 2001), (O'Callaghan and Bull 2005). The 

problem with this approach is that it is difficult to specify 

relatively how textured each land-cover is. Most research in 

remote sensing involving texture aims to provide the optimal set 

of features for discrimination, not to measure how strongly each 

land-cover is textured relative to each other. For any given set 

of features a new algorithm is needed to be derived to convert 

these to a measure of relative texturedness. In this paper we 

propose a new algorithm which does not suffer this failing. It is 

based on the principle that, discrimination between neighboring 

land-covers is performed using intensity where possible, that is 

when the land covers in question have a significant different 

average intensity values. In cases where this is not possible and 

land-covers have similar average intensity values but different 

textures, texture based discrimination is used. The uncertainty 

principle tells us that for any neighborhood property we cannot 

simultaneously measure that property and obtain accurate 

localization (Petrou and Sevilla 2006). Therefore for any texture 

feature extraction there is a tradeoff between size of window 

used to calculate this feature and accurate boundary 

localization. Intensity is not a neighborhood property 

consequently does not suffer this tradeoff and thus offers 

superior boundary localization. If two neighboring land-covers 

can be discriminated using either texture or intensity, 

discrimination should be based on intensity ignoring texture 

because this cue offers the superior boundary localization. 

 

  
(a) (b) 

Figure 4: the gradient magnitude for figure 2(b) is shown in (a), 

this shows the location of edges in the diffused intensity image. 

The gradient magnitude for figure 3 is shown in (b), this 

represents the location of texture edges. 

 

To implement this method first we first calculate the gradient 

magnitude and orientation images for intensity and texture 

features. Each gradient magnitude image is normalized to a 

similar range to prevent one feature image from dominating. For 

each texture gradient magnitude value, we suppress the 

magnitude if by looking at the intensity gradient magnitude 

image we register that there is an intensity edge which 

corresponds to the same boundary which caused the texture 

edge. A texture and intensity edge corresponding to the same 

boundary will rarely spatially coincide due to the uncertainty 

principle so it is important to look in a neighborhood when 

trying to match these boundaries. The neighborhood of a 

location in the intensity gradient magnitude image is defined by 

placing a Gaussian shaped function with centre value of one 

centered over the location. Relative direction of each edge is 

also another important property to take into account when 

matching edges, if two edges have very different orientations 

then the probability of them belonging to the same boundary is 

low. 

 For each location in a given texture gradient 

magnitude image, the maximum intensity gradient magnitude 

value is calculated in the neighborhood of that location, giving 

more weight to edges of a similar direction and spatial location 

as follows 
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Where IMM represents the maximum intensity gradient 

magnitude in a neighborhood centered on (x,y) we seek. G is a 

Gaussian shaped function with centre value of one centered on 

(x,y), IM is the intensity gradient magnitude image, IO is the 

intensity gradient orientation and TO the texture gradient 

orientation. The factor returned from the absolute operator in 

equation 7 is 1 if the texture gradient orientation and intensity 

gradient orientation are equal. This factor decreases as the angle 

difference increases reaching a minimum of zero when the two 

orientations are orthogonal (Grigorescu, Petkov et al. 2004). 

Using this measure of maximum intensity gradient magnitude in 

a neighborhood, we convert this value to a probability like 

measure using 

 

( )pIMMPIE −= exp , (8) 



 

 

where p is a user set parameter. Given a texture edge, PIE 

represents a probability like measure between zero and one of 

not being able to detect this boundary using an intensity edge 

instead. If a texture edge has a corresponding intensity edge this 

value will be close to zero, on the other if a texture edge does 

not have a corresponding intensity edge this value will be close 

to one. A texture edge in the presence of a corresponding 

intensity edge is now suppressed using 
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Figure 5: the suppression of texture gradient magnitude show in 

figure 4(b) using the intensity gradient magnitude of image of 

figure 4(a). 

 

The intensity gradient magnitude and texture gradient 

magnitude images are now combined to form a single gradient 

magnitude image. For each location the maximum magnitude of 

all images is calculated and this value is used for the combined 

image. 

 

 
Figure 6: combined intensity and texture gradient magnitude 

images of figure 4(a) and figure 5 respectively. 

 

Given a single gradient magnitude image produced using the 

above process of combining texture and intensity gradient 

magnitudes, segmentation is produced by apply the marker 

controlled watershed transform (Vincent and Soille 1991). The 

markers are defined using the extended-minima transform 

(Gonzalez, woods et al. 2003). 

 

4. EVALUATION 

This section provides a qualitative evaluation of the proposed 

algorithm. First we evaluate segmentation attained via 

integrated intensity and texture cues against the performance of 

segmentation derive solely from diffused intensity.  

 

 

  

  
(a) (b) 

Figure 7: segmentation of figure 2(a) derived using only 

diffused intensity is shown in (a) while segmentation derived 

using integrated intensity and texture cues is shown in (b). 

Ordnance Survey (c) Crown Copyright. All rights reserved. 

 

Figure 7 (a) shows that land-covers sharing boundaries, which 

have different textures but similar average intensity values are 

classified as single larger segments when texture information is 

not considered. Integration of texture information using the 

above methodology allows accurate classification of these land-

covers which have a texture boundary but no intensity boundary 

figure 7(b). From figure 7(b) it can be also seen that a loss in 

boundary localization of intensity boundaries is not suffered. 

 Figure 8 shows the fusion of texture boundaries 

and intensity boundaries without previously suppressing the 

texture boundaries in the presence of intensity boundaries. 

Although all boundaries are present, we suffer a loss in 

localization of intensity boundaries. 

 

 
Figure 8: Integration of intensity and texture gradient 

magnitudes without prior suppression of texture gradient 

magnitudes. Ordnance Survey (c) Crown Copyright. All rights 

reserved. 

 

Another qualitative evaluation example is shown in figure 9. 

 

 
(a)  

  
(b) (c)  

Figure 9: the diffused intensity based segmentation of (a) is 

shown in (b). The integrated intensity and texture segmentation 

is shown in (c). Ordnance Survey (c) Crown Copyright. All 

rights reserved. 



 

 

This qualitative evaluation shows the potential of the proposed 

algorithm to produce accurate land-cover segmentation 

incorporating texture and intensity information. It was found 

that the algorithm did not perform accurately on all test images 

so work needs to be done to improve the robustness of our 

approach. Integration of color information along with intensity 

and texture would also significantly improve performance. 

When performing evaluation, quantitative as well as qualitative 

evaluation needs to be performed. At this moment there does 

not exist a public available benchmark or database of remotely 

sensed images in urban areas and their corresponding ground 

truths such as the Berkeley segmentation dataset and benchmark 

(Martin, Fowlkes et al. 2001) for natural scenes. 

 

5. CONCLUSIONS 

Generating accurate land-use classification in urban areas from 

remotely sensed imagery is a challenging problem. The visual 

system can perform this task quite easily so a solution to the 

problem would be to model this system. Previous approaches in 

OBIA have been based on a conceptual model of visual 

perception which we believe is not entirely accurate. In this 

paper a new model which we believe is more in line with 

theories of visual perception is proposed. This model contains a 

number of steps, the first of these being a land-cover 

classification where land-cover is defined as areas of uniform 

texture and/or intensity. In this classification each land-cover is 

represented once in its whole form within one representation.  

 A novel segmentation algorithm which 

combines the cues of intensity and texture is proposed. It is 

based on the principle that boundary detection between classes 

should be performed using intensity where possible because 

intensity provides superior boundary localization over texture. 

The algorithm is still work in progress and when completed we 

hope to benchmark it against the Berkeley segmentation 

benchmark. 
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